
trumpet Documentation
Release 0.2.11

Joseph Rawson

Mar 16, 2022

Contents

1 trumpet 3
1.1 News . 3
1.2 Goals and Progress . 3
1.3 Old . 4
1.4 Features . 4
1.5 Credits . 5

2 Installation 7
2.1 Stable release . 7
2.2 From sources . 7

3 Usage 9

4 Contributing 11
4.1 Types of Contributions . 11
4.2 Get Started! . 12
4.3 Pull Request Guidelines . 13
4.4 Tips . 13

5 Credits 15
5.1 Development Lead . 15
5.2 Contributors . 15

6 History 17
6.1 0.2.0 (2017-12-07) . 17

7 Developing trumpet without vagrant 19
7.1 Setup . 19

8 Trumpet Static Resources 23
8.1 CSS Framework . 23
8.2 Basic Javascript Libraries . 24

9 Older Web Views Documentation 25
9.1 Webviews . 25

10 Indices and tables 27

i

ii

trumpet Documentation, Release 0.2.11

Contents:

Contents 1

trumpet Documentation, Release 0.2.11

2 Contents

CHAPTER 1

trumpet

Build a website with pyramid

• Free software: UNLICENSED

• Documentation: https://trumpet.readthedocs.io.

1.1 News

Trumpet is getting a bit closer to the original intended goal of being a set of building blocks and tools to help build a
pyramid web application. Management of static resources has moved completely away from python. Compass is still
being used to help manage the stylesheets. Webpack is being used to handle the javascript, as well as some css, fonts,
etc. Currently, cookiecutter is being used to test generating project skeletons, replacing the previous scaffold.

The general concept is to have support for creating web applications with different hosting requirements. A creative
use of cookiecutter templates may provide the ability to generate a pyramid site, a static application/site, or even a tree
of static assets that can be used in many projects.

1.2 Goals and Progress

• user management

– login/logout

– administer users via REST

– reflective sqlalchemy code, db should provide minimum user/password tables

• db support

3

https://pypi.python.org/pypi/trumpet
https://travis-ci.org/umeboshi2/trumpet
https://trumpet.readthedocs.io/en/latest/?badge=latest
https://trumpet.readthedocs.io

trumpet Documentation, Release 0.2.11

– common sqlalchemy code for all databases complete

– request object with attached sessionmaker completed by upstream scaffold

• session management obsolete?

– minimal use of cookies completed by using JSON Web Tokens

– use access_token as parameter to all requests requiring authentication

– policies for session management now token policies

* sessions per user (configure number of sessions a user can have)

* sessions per device (register devices to user?)

* session duration

* session timeout/expiration

• view classes

– basic view classes to be used by all views

* common methods WIP

* app settings available still debating usefulness, JSONAPI may be better

– base user aware view class

* base class for requests that need auth

– base cornice resource

– base static resource

– base page resource this is almost good enough

* send the html page that runs the app complete

* use template to fill the head with links and meta info

* handle permissions for access to app send auth_token as query param?

• server side validation still needed

– use colander to build schemas for validation (or JSONSchema?)

• integrate with job servers for long running jobs

1.3 Old

Remnants of the old README can be found [here](https://github.com/umeboshi2/trumpet/blob/master/docs/misc.
md).

1.4 Features

• TODO

– remember vobject and icalendar to make .vcf files, etc. . .

4 Chapter 1. trumpet

https://github.com/umeboshi2/trumpet/blob/master/docs/misc.md
https://github.com/umeboshi2/trumpet/blob/master/docs/misc.md

trumpet Documentation, Release 0.2.11

1.5 Credits

This package was created with Cookiecutter and the audreyr/cookiecutter-pypackage project template.

1.5. Credits 5

https://github.com/audreyr/cookiecutter
https://github.com/audreyr/cookiecutter-pypackage

trumpet Documentation, Release 0.2.11

6 Chapter 1. trumpet

CHAPTER 2

Installation

2.1 Stable release

To install trumpet, run this command in your terminal:

$ pip install trumpet

This is the preferred method to install trumpet, as it will always install the most recent stable release.

If you don’t have pip installed, this Python installation guide can guide you through the process.

2.2 From sources

The sources for trumpet can be downloaded from the Github repo.

You can either clone the public repository:

$ git clone git://github.com/umeboshi2/trumpet

Or download the tarball:

$ curl -OL https://github.com/umeboshi2/trumpet/tarball/master

Once you have a copy of the source, you can install it with:

$ python setup.py install

7

https://pip.pypa.io
http://docs.python-guide.org/en/latest/starting/installation/
https://github.com/umeboshi2/trumpet
https://github.com/umeboshi2/trumpet/tarball/master

trumpet Documentation, Release 0.2.11

8 Chapter 2. Installation

CHAPTER 3

Usage

To use trumpet in a project:

import trumpet

9

trumpet Documentation, Release 0.2.11

10 Chapter 3. Usage

CHAPTER 4

Contributing

Contributions are welcome, and they are greatly appreciated! Every little bit helps, and credit will always be given.

You can contribute in many ways:

4.1 Types of Contributions

4.1.1 Report Bugs

Report bugs at https://github.com/umeboshi2/trumpet/issues.

If you are reporting a bug, please include:

• Your operating system name and version.

• Any details about your local setup that might be helpful in troubleshooting.

• Detailed steps to reproduce the bug.

4.1.2 Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug” and “help wanted” is open to whoever wants
to implement it.

4.1.3 Implement Features

Look through the GitHub issues for features. Anything tagged with “enhancement” and “help wanted” is open to
whoever wants to implement it.

11

https://github.com/umeboshi2/trumpet/issues

trumpet Documentation, Release 0.2.11

4.1.4 Write Documentation

trumpet could always use more documentation, whether as part of the official trumpet docs, in docstrings, or even on
the web in blog posts, articles, and such.

4.1.5 Submit Feedback

The best way to send feedback is to file an issue at https://github.com/umeboshi2/trumpet/issues.

If you are proposing a feature:

• Explain in detail how it would work.

• Keep the scope as narrow as possible, to make it easier to implement.

• Remember that this is a volunteer-driven project, and that contributions are welcome :)

4.2 Get Started!

Ready to contribute? Here’s how to set up trumpet for local development.

1. Fork the trumpet repo on GitHub.

2. Clone your fork locally:

$ git clone git@github.com:your_name_here/trumpet.git

3. Install your local copy into a virtualenv. Assuming you have virtualenvwrapper installed, this is how you set up
your fork for local development:

$ mkvirtualenv trumpet
$ cd trumpet/
$ python setup.py develop

4. Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

5. When you’re done making changes, check that your changes pass flake8 and the tests, including testing other
Python versions with tox:

$ flake8 trumpet tests
$ python setup.py test or py.test
$ tox

To get flake8 and tox, just pip install them into your virtualenv.

6. Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

7. Submit a pull request through the GitHub website.

12 Chapter 4. Contributing

https://github.com/umeboshi2/trumpet/issues

trumpet Documentation, Release 0.2.11

4.3 Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

1. The pull request should include tests.

2. If the pull request adds functionality, the docs should be updated. Put your new functionality into a function
with a docstring, and add the feature to the list in README.rst.

3. The pull request should work for Python 2.6, 2.7, 3.3, 3.4 and 3.5, and for PyPy. Check https://travis-ci.org/
umeboshi2/trumpet/pull_requests and make sure that the tests pass for all supported Python versions.

4.4 Tips

To run a subset of tests:

$ py.test tests.test_trumpet

4.3. Pull Request Guidelines 13

https://travis-ci.org/umeboshi2/trumpet/pull_requests
https://travis-ci.org/umeboshi2/trumpet/pull_requests

trumpet Documentation, Release 0.2.11

14 Chapter 4. Contributing

CHAPTER 5

Credits

5.1 Development Lead

• Joseph Rawson <joseph.rawson.works@gmail.com>

5.2 Contributors

None yet. Why not be the first?

15

mailto:joseph.rawson.works@gmail.com

trumpet Documentation, Release 0.2.11

16 Chapter 5. Credits

CHAPTER 6

History

6.1 0.2.0 (2017-12-07)

• First release on PyPI.

17

trumpet Documentation, Release 0.2.11

18 Chapter 6. History

CHAPTER 7

Developing trumpet without vagrant

7.1 Setup

I like to use virtualenvwrapper

sudo apt-get install virtualenvwrapper
mkvirtualenv trumpet
workon trumpet
pip install requests

Development packages are needed to install some of the python packages:

.. code:: sh

sudo apt-get install libpq-dev python-dev libjpeg62-dev libpng12-dev libfreetype6-dev liblcms1-dev
python-requests libxml2-dev libxslt1-dev libssl-dev

Next we have to download build and prepare the static resources.

7.1.1 Setup Compass

Make sure rubygems is on your system:

sudo apt-get install rubygems

Setup local gem environment:

mkdir -p ~/local/gems

Add to ~/.bashrc:

19

trumpet Documentation, Release 0.2.11

#setup gems if directory exists
if [-d ~/local/gems]; then

export GEM_HOME=~/local/gems
export PATH=~/local/gems/bin:$PATH

fi

Source the bashrc or spawn another shell and install the gems:

gem install sass -v 3.2.18
gem install compass -v 0.12.2
gem install susy -v 1.0.9
gem install sassy-buttons -v 0.2.6
gem install bootstrap-sass -v 3.0.2.1
gem install compass-ui -v 0.0.5

7.1.2 Setup NodeJS

FIXME: Need better instructions for nodeenv.

Get nodejs for virtualenv

workon trumpet
pip install nodeenv
nodeenv -p

The last statement will download the latest stable version of nodejs and build it in the python virtual environment so
that both virtual environments can be integrated together.

Install global nodejs packages

Then, install these packages globally:

npm install -g coffee-script
npm install -g grunt-cli
npm install -g bower

7.1.3 Get packages for grunt

In the project directory, get the packages for grunt:

npm install

7.1.4 Get bower components

Then install the bower packages:

bower install

20 Chapter 7. Developing trumpet without vagrant

trumpet Documentation, Release 0.2.11

Bower packages can contain whole git repositories, which can be excessive when deploying a python package of static
resources. I have written a script that helps to deploy only what is needed from the bower components. The script is
not very smart, but handles any bower package that points to a single file, or list of files very well.

run grunt

grunt

make package

python setup.py (develop/install/sdist)

7.1. Setup 21

trumpet Documentation, Release 0.2.11

22 Chapter 7. Developing trumpet without vagrant

CHAPTER 8

Trumpet Static Resources

8.1 CSS Framework

• Compass:
Compass is the tool I use to generate my CSS resources. The CSS specification has no definitios for variables,
forcing many web developers to make class names such as “green” and then add CSS code like this:

.green {
background-color: green;
}

But what the developer really needs is something more along this idea:

.warn {
background-color: $warning-background;
}

. . . which helps to simplify the structure of the CSS and remove some of the bad hacks that are used to workaround
the deficiencies of the CSS specification.

• Susy(Unused): Susy is a grid layout system that will allow for responsive webpages. I am not using this
anymore, as bootstrap is currently handling the responsive grid layout, but Susy is superior to bootstrap and
since I am also using bootstrap-sass, I feel that I can eventually reimplement the bootstrap grid layout in Susy.
UPDATE: I decided to use the bootstrap grid system for the time being.

• Sassy Buttons: This is a collection of mixins and defaults that help a developer make custom buttons very easily.

• Bootstrap for Sass: This wonderful package allows me to refrain from using the css that is provided with
bootstrap and quickly make a custom version that I can integrate more closely with other objects on the page.
Having bootstrap in this form allows me to adjust how bootstrap operates and allows me to only choose the parts
I need (Currently everything is included).

• FontAwesome: Instead of just using the basic css, I have chosen to use the fontawesome-sass distribution. This
provides scalable vector icons to websites.

23

http://compass-style.org/
http://susy.oddbird.net/
http://jaredhardy.com/sassy-buttons/
https://github.com/thomas-mcdonald/bootstrap-sass
http://fontawesome.io/

trumpet Documentation, Release 0.2.11

• Compass UI: This compass plugin provides the ability to generate jQueryUI themes with a minimum of effort. I
have spent hours on the themeroller before trying to create a custom theme that would match the general colors
that I use on a web page. With this plugin, all I have to do is set the variables to correspond to the color variables
that I use elsewhere on the page and I instantly get themed widgets that don’t look like they came from another
site.

8.2 Basic Javascript Libraries

• Requirejs: Required.

• jQuery: jQuery is a very good for selecting and maninpulating elements in the DOM.

• jQuery User Interface: jQueryUI is used for the fullcalendar widget, as well as for dialog boxes and other user
interface elements that aren’t used through boostrap. The corresponding styles are maintained with compass.

• Bootstrap v3: Bootstrap is a CSS/Javascript framework used to help make responsive websites. Bootstrap was
selected to be used in order to serve to mobile devices. The CSS is handled through compass with bootstrap-sass.

• Underscore.js: Underscore is a library full of useful utilities, and like jqueryui, is depended upon by other
javascript libraries I use.

• Backbone.js: Backbone is an excellent library that provides an api to make very rich views tied to models that
are seamlessly synchronized with the server via a REST interface.

• FullCalendar: FullCalendar is a very good library that provides an interactive calendar where events can be
retrieved dynamically and grouped, colored, or otherwised styled in many ways. The calendar provides monthly,
weekly, and daily view models to interact with.

• Ace Editor: The ACE editor is a good text editor that is very useful for editing html, css, java/coffee scripts, and
other formats that aren’t being used yet.

• CoffeeScript: I am currently experimenting executing coffeescript on the client using the browser to compile
the code. While compilation is generally quick on the browser, the size of the compiler (196KB, and already
minified) encourages me to consider implementing server side compilation.

• Teacup: “Teacup is templates in CoffeeScript.” – nuff said http://en.wikipedia.org/wiki/Domain-specific_
language

24 Chapter 8. Trumpet Static Resources

https://github.com/patrickward/compass-ui
http://requirejs.org
http://jquery.com/
http://jqueryui.com/
http://getbootstrap.com/
http://underscorejs.org/
http://backbonejs.org/
http://arshaw.com/fullcalendar/
http://ace.c9.io/#nav=about
http://coffeescript.org/
http://goodeggs.github.io/teacup/
http://en.wikipedia.org/wiki/Domain-specific_language
http://en.wikipedia.org/wiki/Domain-specific_language

CHAPTER 9

Older Web Views Documentation

9.1 Webviews

A Webview is a name created to denote a single page application. Trumpet is being geared to become a library to help
create websites where most/all pages are apps. I have managed to shrink the html page served by pyramid to a very
small head with one script tag loading requirejs and pointing to the loader for the app. I would love to use another
name for this, but naming is probably the hardest part of development.

9.1.1 Page Layouts

Before switching to the SPA paradigm of thought, every page was rendered with a template that depended on the
presence of a layout model. The layout model was simply an object with attributes that was applied to a mako
template. The type of each attribute is either text or mako template. One of my original goals was to store the main
layout template in the database, as well as css and javascript, to allow the end user/admin to customize the site without
updating the code.

9.1.2 Server vs. Client

Mako templates are very powerful, allowing the author to wield the full power of python when rendering the template.
In fact, the templates are versatile enough to bypass writing code in the view callable and put all the logic in the
template, although this is generally not the wisest thing to do. The largest problem with using the mako templates is
that the code is executed server side, preventing me from being able to protect the service from mistakes or malice. I
thought about using a more restrictive template system, but soon realized that the inherent problem was the server side
rendering, and the server templates would either have to be too limited to be of more than cosmetic use, or flexible
enough to bypass the policy of the server.

This is where client side templating comes to the rescue. With client side templates, it is far more difficult to endanger
the service that is being provided. I am expecting the worst of the problems to be dysfunctional pages, although the
admin pages that edit the templates should always work. I also see a very slim (I hope!) possibility that bad templates
could cause a denial of service, but I don’t expect this to be a problem that occurs often.

25

trumpet Documentation, Release 0.2.11

Being less familiar with javascript than with python, I had to search and compare templating styles. I started with
underscore templates, but found them to be very limiting. I then started using EJS templates, and found them to be
very similar to mako templates, although not as versatile. Nevertheless, I settled on using EJS templates for trumpet.

After believing I was happy with using EJS templates, I was looking around the stackoverflow forums to find a solution
that I was having with CoffeeScript and learned about teacup. Teacup is a domain specific language that works very
well as a templating system. With teacup, not only do you have the full flexibility of javascript when rendering the
template, you are also using coffeescript to define the template, which is far more elegant than anything else I have
seen on either the python or javascript sides. I did like how concise jade is, but I feel that teacup will be a better fit for
trumpet.

9.1.3 REST

The general idea behind REST isn’t really hard to understand. It was having to unlearn the way by which much of the
web had already been operating for years. I spent many years knowing nothing of PUT and DELETE, but only being
familiar with GET and POST, which I naively treated (loosely) as read/write methods. Now that I look back (and
not very far either) I was often using GET to perform both deletions of single objects, as well as attaching relations
together.

After learning REST, my ability to write arbitrary url’s to perform a function has been severely hampered, and this is a
good thing. I now have only four verbs that I am able to use, and I am completely restricted from putting verbs in the
url, or even identifying the url as an action. These restrictions help keep the web services well structured and coherent.
In fact, a good REST API decouples the server from the browser, allowing a larger variety of clients to have access to
the services.

9.1.4 Static Resources

Managing static resources can become very messy the more involved a project becomes in using them. The very large
variety of javascript libraries and css frameworks available can be overwhelming. Making sure that everything fits
together and works can be an arduous task. Tracking upstream dependencies is probably a bit more difficult for a
python/pyramid programmer than it is for a person using rails or nodejs. I had been (and I am currently still) using
fanstatic to help manage these resources. There are quite a few prepackaged libraries depending on fanstatic available
on the Python Package Index. These packages don’t seem to be in much use, and after updating quite a few of them
myself, I decided to wean myself away from fanstatic. I am currently investigating webassets, which seems to be a far
more robust and capable asset manager.

Moreover, and more especially with css, it can become very time consuming to modify two or more upstream css
resources to match the general style of your page.

26 Chapter 9. Older Web Views Documentation

CHAPTER 10

Indices and tables

• genindex

• modindex

• search

27

	trumpet
	News
	Goals and Progress
	Old
	Features
	Credits

	Installation
	Stable release
	From sources

	Usage
	Contributing
	Types of Contributions
	Get Started!
	Pull Request Guidelines
	Tips

	Credits
	Development Lead
	Contributors

	History
	0.2.0 (2017-12-07)

	Developing trumpet without vagrant
	Setup

	Trumpet Static Resources
	CSS Framework
	Basic Javascript Libraries

	Older Web Views Documentation
	Webviews

	Indices and tables

